Foreshock electron beams and electrostatic waves observed by Cluster

J. Souček⁽¹⁾, M. Basovnik⁽¹⁾, A. Tomori⁽¹⁾, O. Santolík⁽¹⁾, A. Fazakerley⁽²⁾

> ⁽¹⁾ IAP, Prague, Czech Republic ⁽²⁾ MSSL, Holmbury St. Mary, UK

With thanks to Cluster WHISPER, FGM, CIS and PEACE instrument teams and to the Cluster Active Science Archive.

Electron foreshock

- Foreshock: a region of solar wind magnetically connected to the bow shock
- Populated by beams of back-streaming electrons (and further downstream ions), reflected and accelerated by the shock.
- Characteristic observable signature intense electrostatic wave activity around the electron plasma frequency.
- Foreshock electron beams are a universal feature shocks: observed at at planets, interplanetary shock, termination shock ...

Foreshock electron beams

- A fraction of incident solar wind electrons is reflected and accelerated by the bow shock [Leroy & Mangeney, 1984, Wu, 1984].
- These electrons (10 eV 10's of keV) are responsible for the generation of the Langmuir waves via beam plasma instability.
- ExB drift in the foreshock acts as a velocity filter on the reflected electrons, forming the beams [Fitzenreiter et al., 1990].

Origin of the beams

Foreshock beam formation:

- Cutoff distribution [Filbert & Kellogg, 1979, Fitzenreiter et al., 1990]:
 - For each point (R,Df) cutoff velocity is defined Vc = VE x B R / Df
 - "Bump on tail" required for the beam-plasma instability is formed at Vc
- Bump formed by reflection process [Leroy & Mangeney, 1984, Wu, 1984].
 - Beam with loss-cone ("rabbit ears")
 - Model allows to calculate beam energy from parameters of source shock (θ_{Bn}, B_{down}/B_{up} etc.)

Observation of foreshock electron beams

- Foreshock beams are typically faint (n_b/n_e = 10⁻² 10⁻⁴) and non-stationary.
- Beams are present consistently, but not many direct observations were published [Fitzenreiter et al., 1996, Kasaba et al., 2000].
- Under favorable conditions, PEACE electron spectromenter on Cluster can be used to observe and characterize these beams - at least the slower ones.
 - Large geometrical factor needed (HEEA)
 - Good energy resolution (BM preferred)

Foreshock event C2 2011-04-21

WHISPER C2 2011-04-21 19:54:00.000

Suitable event:

- Cluster in BM
 - PEACE HEEA on
 - B field in GSE Z direction (near parallel to spin axis)
 - pitch angle distribution available every PEACE sweep (8 per second).
- FS waves waves above and below ω_p observed

Cluster/MAARBLE workshop Rhodes 2014

PEACE observed beams

Beam-like bumps between 20 eV and 1 keV observed in the B-parallel bin

- Higher energies not available due to low count rates
 - In the ~100 eV range, the counting statistics is typically good.

Beam identification

- Beams identified automatically
 - Statistically significant (> 2σ) increase in PSD.
 - 361 beams between 13
 eV and 850 eV identified
 (Te ~ 5 eV).
 - Beam energy correlates with foreshock waves
 - Higher energy –> narrow-band
 - Low energy -> broadband
- Consistent with [Lacombe et al.,1985, Cairns & Fung,1988].
- Df and Θ_{Bn} parameters calculated.

Comparison to model - statistics

Comparison to models - statistics

- Comparison of measured and model beam speeds for moderate beam speeds.
 - Fitzenreiter et al., 1990 cutoff distribution model.
 - Leroy and Mangeney, 1984 energy.
- The measured and predicted value are comparable, but correlation is weak.

Foreshock wave structure

WHISPER C2 2011-04-21 19:54:00.000

Characteristic features of the foreshock spectrum:

- Wave activity at plasma frequency.
- Waves far above and below the plasma frequency ($\Delta f/f$ up to 80%)

Electrostatic dispersion relation for beam-plasma instability (Gary 1983)

- Second solution beam mode.
- Langmuir wave branch modified
- Growth often on the beam mode
 - "Real" Langmuir waves only grow for fast and tenuous beams Cluster/MAARBLE workshop Rhodes 2014

Wave-particle analysis

Fitting of two Maxwellians employed to estimate beam properties Vb = 86 eV = 4.1 Vt

nb/n0 = 0.25%

```
Tb/T0 = 0.4
```

1k

1k

These 3 parameters are sufficient for linear dispersion analysis.

- Foreshock geometry:
 - The beam corresponds to $\Theta_{_{\!\!Rn}} \sim 87^{\circ}$ source.
 - Leroy & Mangeney model predicts ~570 ev (near 90°, model is very sensitive to Θ_{Bn} value.

Wave-particle analysis

- Linear dispersion relation solved for measured parameters.
- Langmuir branch
 - No growth
 - Low damping at small k

Beam mode

- → growth at k*λd ≈ 0.3
- Growth on the beam mode branch
 - Maximum calculated growth at 23.2 kHz
 - Peak observed at 24.3 kHz
- Oscillations near ω_p likely on Langmuir branch.

Wave-particle analysis

Drifting Maxwellian fit:

Vb = 31 eV = 2.6 Vt

nb/n0 = 2.5%

Tb/T0 = 0.3

1k

0.8

- Foreshock geometry:
 - The beam corresponds to $\Theta_{_{\rm Bn}} \sim 75^{\circ}$ source.
 - Leroy & Mangeney model predicts ~33 eV
- Growth below ω_{n}
 - Max growth at 17.6 kHz
 - Peak at 15.5 kHz
 - "Rough" agreement only. Can probably be improved by a better distribution model.

Role of the Doppler shift

Predicted Doppler shift $(k^*\lambda_D)$

ω_p line immune to Doppler shift

Very low k waves

- For beam modes, Doppler shift up to 1 kHz
 - Direction consistent
 - Cannot account for all variation

Conclusions

- Systematic measurement of foreshock electron beam energies performed using PEACE data
 - Beams up to 1 keV observed consistently
 - Dependence on foreshock depth consistent with Leroy & Mangeney 1984 model.
- Broadband waves below ω_p correspond to slower beams [Lacombe et al., 1985, Cairns & Fung, 1988].
- Dispersion relation for electrostatic beam plasma instability solved for selected distributions.
 - Growth on the beam-mode branch at moderate k
 - Low k Langmuir oscillations at plasma frequency observed
 - Rough agreement between calculated and observed values
- Doppler shift significant, but cannot account for the variation in frequency.